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A turbulent spot’ in an axisymmetric 
free shear layer. Part 2 

By A.K.M.F.HUSSAIN,  S .  J.KLEIS A N D  M. SOKOLOVT 
Department of Mechanical Engineering, University of Houston, Texas 77004 

(Received 9 April 1979 and in revised form 4 September 1979) 

The mechanics of a spark-induced coherent structure (called a ‘spot ’) in the turbulent 
mixing layer of a 12.7 cm diameter incompressible air jet has been investigated through 
phase-locked measurements a t  three streamwise stations. Phase averages have been 
obtained from 200 realizations of X-wire (time-series) data after these are optimally 
time-aligned with respect to one another through an iterative process of maximization 
of cross-correlation of individual realizations with the ensemble average. Realizations 
that are grossly out of alignment owing to turbulence-induced distortions have been 
rejected; the rejection ratio increases with increasing radial position. Data include 
phase-average time series of background turbulence intensities, coherent and back- 
ground Reynolds stresses, vorticity and intermittency a t  different transverse positions. 
Spatial distributions of these properties over the extent of the spot have been pre- 
sented as contour maps. The computed pseudo-stream-functions have been compared 
with the phase-average streamlines inferred from the measured distributions of the 
velocity vector. Comparison with the phase-average intermittency contours show that 
the pseudo-stream-functions are reliable and, even though the integration involved 
produces smoothed-out stream functions, are most useful in deducing the structure 
dynamics and its convection velocity. 

The spark-induced spot is an elongated large-scale coherent vortical structure 
spanning the entire thickness of the mixing layer, which moves downstream at a 
convection velocity of about 0-68Ue. The dynamics of the turbulent mixing layer spot, 
whose signature is buried in the large-amplitude background fluctuations, is much 
more complicated than that of the boundary-layer spot. The spot transports jet-core 
fluid outwards a t  its front and entrains ambient fluid primarily a t  its back; the outward- 
momentum transport dominates the inward transport. The Reynolds stress contribu- 
tion by the spot structure is noticeably larger than that due to the background turbu- 
lence. The coherent structure vorticity is significantly modified by the structure- 
induced organization of the background Reynolds stress at  the locations of ‘ saddle 
points ’ of the latter’s distribution. The vorticity, intermittency and other turbulence 
measures, zone averaged over the extent of the spot, compare well with the time- 
average values, thus suggesting that the spark-induced ‘spot ’ is probably not different 
from a naturally occurring large-scale coherent structure. 
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1. Background 
The increasing awareness of the presence of the large-scale coherent structures in 

turbulent shear flows and their possibly dominant role in the transports of heat, mass 
and momentum and in the production of aerodynamic noise have been the motivation 
for continuing investigation of the coherent structures in the near fields of circular 
jets in our laboratory (Zaman 1978; Clark 1979). Even though the existence of these 
structures and their organized interactions (like pairing) have been conclusively 
demonstrated in flows that otherwise possess all the symptoms of fully-developed 
(random) turbulence (Brown & Roshko 1974; Winant & Browand 1974; Browand & 
Laufer 1975; Hussain & Zaman 1975, 1980), their occurrence has not been necessarily 
accepted as universal. In fact, Chandrsuda et al. (1978) contend that the Brown- 
Roshko roller-type large-scale coherent structure in a mixing layer is a legacy of the 
upstream instability and that these structures will be three-dimensional when the 
Reynolds number or the free-stream turbulence is high (see also Yule 1978; Pui & 
Gartshore 1978; Hussain & Zaman 1980; Hussain & Clark 1980). The evolution of the 
mixing-layer characteristics has been shown to be dependent on the initial-mean and 
turbulence characteristics (Hussain & Zedan 1978u, b )  or controlled excitation (Oster 
et al. 1978; Zaman 1978), which presumably influence the coherent structure. 

Clark (1979) has visually observed that the axisymmetric mixing layer is well 
organized a t  lower Reynolds numbers but is essentially disorganized a t  higher 
Reynolds numbers. Surprisingly, the cine films produced show that the mixing layer is 
more organized when tripped, i.e. when the efflux boundary layer demonstrates all 
characteristics of the equilibrium flat-plate turbulent boundary layer, than when 
untripped. The pictures show that tearing (when a structure is divided into two or 
more parts) is a t  least as dominant a mode of coherent-structure interaction as pairing. 
Zaman’s (1978) data in a jet under controlled excitation document the jet response to 
the excitation and the spatial distributions of the flow properties over the extent of the 
vortical structures a t  different phases of the pairing event. These data show that 
significant Reynolds stress production is associated with the pairing process and that, 
even when the initial vortex roll-up is organized through controlled excitation, the 
initially toroidal vortices develop three-dimensionality before breakdown near the 
end of the potential core, where the controlled excitation seems to have little effect in 
retaining circumferential coherence (Hussain 8 Zaman 1980; see also Yule 1978; 
Davies & Baxter 1978). 

Since the evolution of three-dimensionality in the initially toroidal structure in an 
axisymmetric shear layer has no preferred azimuthal location or orientation, quantita- 
tive characterization of the evolution of the three-dimensional structure will require 
complex conditionally-sampled measurements involving multiple probes. Such mea- 
surements are subject to a number of constraints. The detection depends on sub- 
jectively chosen features of the coherent-structure signatures like velocity, vorticity, 
temperature, etc. In the case of the axisymmetric mixing layer, the educed coherent- 
structure characteristics and convection velocities have been found to be dependent 
on whether the detection is based on the positive or negative spikes in the u signal as 
well as on the strengths of these spikes (Lau & Fisher 1975; Bruun 1977). In addition 
to the randomness in their arrival times at  a particular measurement location, there are 
large variations in the shape, size, location, orientation and strength of the structure 
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from one realization to another. Each realization may capture a different cut of the 
structure so that the straightforward average over a large ensemble would not capture 
the individual-structure characteristics. There is apparently a large radial variation 
in the organization of the structure (Yule 1978; Lau 1978, private communication). 
The structure interactions like pairing or tearing further complicate its detec- 
tion and eduction. Also, even if care is taken to circumvent or eliminate these 
complicating factors, eduction of stable ensemble averages will be extremely time 
consuming. 

In  an attempt to devise an experiment which is free from the above-mentioned 
constraints, it was decided to trigger the creation of a three-dimensional structure a t  
the origin of the mixing layer through the introduction of a spark, and track its 
evolution downstream by using the spark trigger as the time reference for phase lock. 
While the present experimental approach is comparable to that in the boundary layer 
(Wygnanski, Sokolov & Friedman 1976; Zilberman, Wygnanski & Kaplan 19771, it 
must be recognized that the mechanisms involved are significantly different. Since the 
spark-induced structure - called a ‘spot ’ for simplicity - is quite overshadowed by the 
evolving large-amplitude (random) fluctuations in the mixing layer, it is a much more 
difficult experimental task to educe the ‘ spot ’ signature in the mixing layer than in the 
boundary layer. The signal alignment through iterative cross-correlation in the mixing- 
layer case is much more complex and, consequently, the rejection ratio would be 
typically much higher. The spot in the mixing layer does not possess a self-preserving 
shape and undergoes large distortions through turbulence-induced ‘jitter’ in the con- 
vection speed and its shape, size and orientation, thus further compounding the 
detection as well as discussion of its dynamics. 

The experimental details and procedures, the data analysis and signal enhancement 
techniques and the phase-average streamwise velocity data were presented in part 1 
(Sokolov et al. 1980; hereinafter referred to as I). This part discusses the detailed distri- 
butions of the phase-average coherent and background Reynolds stresses, vorticity, 
intermittency, streamlines and pseudo-stream-functions and attempts to discuss the 
dynamics of the spark-induced coherent structure. 

Note that the zone-average r.m.s. intensities are essentially the same as the time- 
average intensities and the maximum departure of the phase-dependent intensity 
from the time-average intensity is no more than 20 yo. Only on the low-speed side is 
the phase-dependent intensity comparatively more pronounced, as is expected. Thus 
the spot is indeed a relatively weak structure in comparison with the background 
turbulence (see I) .  

2. Phase average 
The appropriate approach to characterizing the evolution of the spark-induced 

(spot) structure is to obtain ensemble-average measurements locked to the spark 
trigger a t  a particular phase of the structure as it travels past a detection probe. 
Discussion of the spot dynamics thus requires a clear understanding of the phase- 
averaging operation. Especially, the interpretation of the coherent and background 
Reynolds stresses requires derivation of the governing equations for the phase-average 
flow variables. 

In  the presence of the spot structure, the signal f of any flow variable can be assumed 
4-2 
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to consist of an organized-structure component fp superimposed on the background- 
turbulence (phase random) fluctuation f7 (Hussain 1977). Thus 

f(x,t) =f,(x,t)+fAx,t). (2.1) 

In order to separate the contributions due to the coherent and background turbulent 
flow fields, it  is necessary to employ the phase average (Hussain & Reynolds 1970). 
The phase average (f) off a t  any phase $ a t  x is defined as 

1 N  
(f (x, $1) = lim - I: f (x ,  $+nwr), 

r i - t m N , = l  
(2.2) 

where w is the circular frequency of the periodic occurrence of the structure and r the 
period. If t is the time within a period corresponding to $, then 

that is, 

1 N  
(f(x,t)) = lim - I: f ( x , t + n r ) ,  

N+m N,=l 

fp(x, T) = { f ( x ,  t ) ) ,  0 < T < 7.  

(2.3) 

In  a practical experiment, the phase average need be taken over only a finite 
ensemble size N .  The adequacy of the ensemble size N is determined from the conver- 
gence of the phase-average data. For the present case, suppose the spark is triggered a t  
intervals r apart. In order to capture the spot signature, the data at any x station will 
be sampled at  intervals r apart. If data at  aparticular phase q5 with respect to the spark 
trigger are desired, then the signal will be sampled at  that $ over a large number of 
realizations. The average of the data is the phase average a t  that q5 since background 
turbulence being random will cancel out over a large number of cycles. If this average 
is repeated over a range in q5 covering the spot signature, we will obtain the required 
phase-average distribution in time a t  the measurement location. Thus, given an 
instantaneous signal and the period between successive sparks, the coherent and 
random parts of the signal can be separated. 

Since the spark-generation period can be chosen at  will, it  is desirable to space the 
formation of the spot such that two successive spot structures do not interact with each 
other; thus, the educed phase-average coherent structure is that of a single spot in the 
mixing layer. This requires that the period between successive sparks must be much 
larger than the structure passage time a t  any measurement station. In the present case, 
data spanning the spot signature occupy only a fraction (about 4 %) of the interval 
between sparks. It must be recognized that, in the current experiment, the background 
turbulence will probably include naturally occurring coherent structures also, but 
these would occur randomly and leave no lasting footprints (except the conventional 
time-mean values) in the phase average. Consequences of the phase-averaging scheme 
are 

(f7> = 0; (f?JfJ = 0. (2.4) 

The second relation in (2.4) states that the coherent and random components are 
uncorrelated. It should be emphasized that this relation should not be taken to suggest 
that the coherent and random components are unrelated. On the contrary, noticeable 
turbulence production may be associated with the spot and can be confirmed by non- 
zero phase-average contributions like ( f , .g , )  or phase-dependent intensityf: (see later). 
The question then naturally arises as to how much of the (f,) and ( f p  g,) data, attri- 
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buted to the coherent structure, is really due to  periodic modulation of the background 
field. This concern can be relieved by realizing that the characteristic time scale of the 
spot coherent motion is much larger than that of the background turbulence field. Thus, 
even if the background turbulence intensity around the spot may be higher, when 
phase averaged over a large number of realizations, superposition of these random 
small-scale turbulent eddies will cancel out. That is, even when f , ( t)  is affected by the 
spot, (f:) contributes nothing to f,(t). 

Substituting the decomposition (2.1) into the incompressible continuity and 
momentum equations, one gets, for the phase-average flow field, 

a(u,)/aX, = 0, ( 2 . 5 ~ )  

and 

where 

- ( u . )  lj = +- a ( v-- a(uJ @,iuri)), 
Dt a p axi axj axj 

(2.5b) 

( 2 . 5 ~ )  

is the time derivative associated with a fluid particle moving in the phase-average flow 
field (note, there is no summation over the subscript r ) .  The corresponding background 
turbulent-momentum equation is 

The second term on the right-hand side represents organized-field momentum trans- 
port by the background turbulence. -p(uriurj)  represents the contribution of the 
background turbulent field to the phase-average field and is termed the phase-average 
Reynolds stress. It is the stress responsible for extraction of the phase-random turbu- 
lent kinetic energy from the phase-coherent field through the work of -p{u,,urj) 
against the structure-induced shear rate a(ui) /axj .  

For energy equations of the phase-average and background turbulent fields and 
discussions of the energy exchanges between these two fields, and the associated flow 
physics, see Hussain (1977).  

For convenience, we will denote the coherent component off (x, t )  by f,, its random 
component by f,. Thus, u = up + u, and v = up + vr, and (u, or) is the phase average of 
the background-turbulence Reynolds stress. We will also denote u:, v: as the phase- 
average r.m.s. values defined as 

Note that if the phase-average field is further decomposed into a time-independent 
field and a time-dependent field (Hussain & Reynolds 1970), i.e. 

f (x, t )  = f(x) +fp,(x, t )  + f r k  t ) ,  (2  -8) 

then --pGiGj will denote the coherent-field Reynolds stress. This decomposition is 
meaningful when the organized field can be regarded as a perturbation of the mean 
field, but is not very useful in the present situation where the coherent structure is not 
a superimposed structure on the time-mean field. At the location of the structure, the 
flow is essentially due to the structure. Furthermore, the mean-field is presumably 
mainly due to the superposition of many such coherent structures, 
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3. Procedure 
This study was carried out in the near-field of a 12.7 em diameter circular air jet 

operated at the exit speed of 20 m s-1. See I for details of the apparatus. Hot-wire data 
were obtained at  different radial positions in the mixing layer a t  the three x stations 
corresponding to x/D = 1.5, 3-0 and 4.5. The radial position at each station is charac- 
terized by the co-ordinate 7 = (y - &D)/x. For correspondence between the 7 values 
and the U / V ,  values as well as for documentation of the basic flow state, see I. Time- 
series data from a linearized X-wire were recorded on-line, the A/D converter being 
triggered such that 500 data points, sampled a t  8-4 kHz, spanned the coherent structure 
signature. The time delay for the trigger was determined from the streamwise distance 
of the station from the spark location and the approximate convection velocity of the 
structure. Ensemble averages were obtained from 200 realizations after the time-series 
data were aligned with respect to one another through an iterative method of maxi- 
mization of cross-correlations of individual realizations with the ensemble average. 
Since the spot was expected to be a large-scale entity, each signal was low-pass filtered 
at 500Hz in order to hasten the iteration process. Further signal enhancement was 
achieved through rejection of the realizations requiring excessive time shifts. 

In addition to the u(t) and v(t) data, intermittency I ( t )  data were taken on-line. The 
motivation for obtaining intermittency data was to use an independent criterion for 
detection of the spot signature. Since the spot is embedded in the turbulent mixing 
layer, the intermittency detector will detect both the spot and the turbulent mixing 
layer. However, the naturally occurring structures in the mixing layer as well as the 
boundaries of the layer being random, the phase-average contribution locked to the 
spot will highlight only the region occupied by the spot. Since the intermittency 
detection is based primarily on the high-frequency content of the v(t) signal, it gives 
an independent method of spot detection compared to that based on the phase average 
up, vp, or Q data which are biased towards the low-frequency, large-amplitude com- 
ponents of the spot signature. 

Measurement of intermittency has been carried out by numerous investigators and 
the criteria used vary widely. Since random vorticity is the only characteristic identifier 
of a turbulent region, all intermittency detection criteria must somehow relate to  
vorticity fluctuations. Typically, the z component of vorticity 5 = %/ax - au/ay is 
used for detection. However, since g alone requires a multi-wire probe, it was decided 
to use only &/ax for turbulence detection. In order to further simplify detection, it 
was decided to use a single X-wire probe and apply the Taylor hypothesis, i.e. assume 
av/ax = - (1/  V )  av/at. Thus, high-frequency fluctuations in avlat  may be taken as an 
indicator of vorticity fluctuations. While both turbulent and non-turbulent portions 
across an interface can have velocity fluctuations of comparable amplitudes, the 
fluctuations in the turbulent region contain small scales and thus higher frequencies. 
This characteristic can be taken advantage of by including the second time-derivative 
a2v/8t2 in the intermittency detection. Detection based on the rectified derivatives of 
the velocity signal has been used by many investigators. 

Figure 1 shows the schematic of the detection circuit; the two inputs El and E2 are 
the linearized outputs from the two wires of the x-wire probe. The circuit as well as 
the criteria for detection are essentially the same as those used by Kleis (1974). Note 
that the intermittency detection is based on the signal 
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FIGURE 1. Schematic diagram of the intermittency detection circuit. 

e(t) = lav/atl + A  la2v/at21. (3.1) 

The v( t )  signal is bandpass filtered in the range 300 Hz to 3 kHz in order to emphasize 
the high-frequency velocity oscillations but exclude noise. Note that the phase shifts 
in the a2v/at2 signal would be such as to smooth out the oscillations due to lav/atl in 
e(t) and thus facilitate better detection through reduction of ‘drop-outs ’, which 
are normally eliminated through smoothing of I ( t ) .  The ratio A between the second 
and first derivatives in (3.1) was chosen such that the r.m.8. amplitudes of the two 
terms were approximately equal. Spot checks of the time-average intermittency y 
as a function of the detection threshold eth showed that y is insensitive over a good 
range in eth. The threshold level chosen was within this range. 

Since u( t ) ,  v(t)  and I ( t )  signals are all derived from the same X-wire probe in the flow, 
they all should capture the same flow features simultaneously. Thus, the time shifts in 
the v(t)  and I ( t )  arrays for optimum alignment were assumed to be the same as those 
for the corresponding u( t ) ;  consequently, the v(t)  and I ( t )  realizations corresponding 
to the rejected u( t )  realizations were also rejected. Also, the radial variations of the 
time-shift histograms and rejection ratios for v(t)  and I ( t )  at  the three measurement 
stations are the same as for u(t) .  

As explained in I, enhancement of the coherent-structure signature was achieved 
through rejection of ‘bad ’ realizations before obtaining ensemble averages. The 
rejection was determined on the basis of excessive time shifts required for optimum 
alignment and was justified on the grounds that bad realizations represent spots which 
have been subjected to excessive distortions and thus should be excluded from the 
ensemble averages. Thus, the probability-density functions of the time shifts, as well 
as the radial profiles of the rejection ratios, are themselves interesting features of the 
mixing layer physics. Realizations requiring time shifts more than 3 standard devia- 
tions of all time shifts a t  each location were rejected. The rejection ratio, i.e. fraction 
of realizations rejected on the basis of the above-mentioned criteria, increased rapidly 
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FIGURE 2 (a). For legend see page 105. 

from nearly zero on the core side to larger values (viz. 15 % at station 1,45  yo at station 
2 and 51 % a t  station 3) on the outer edge of the mixing layer. The standard deviation 
u of the time shifts increases rapidly across the mixing layer towards the outer edge 
except at  station 1, where the radial variation of CT is smaller (see I). Since time shifts 
are measures of distortion of the spot by the naturally occurring background turbu- 
lence, these large radial variations of CT and rejection ratio would appear to be a result 
of interactions with the natural structures, which have been observed by Hussain & 
Clark (1980) to undergo tearing and fractional pairing starting at  about x /D  2: 1.0. 

4. Results 
4.1. Phase-average velocity Jield 

Figure 2 (a )  shows the composite of the final iteration ensemble-average transverse- 
velocity signals ijP/Ue at the first station ( x / D  = 1.5) as a function of the time delay 
T (ms) with respect to the spark trigger. (Note that in figures 2-12, increasing time 
corresponds to decreasing x and vice versa. The co-ordinates at  the top of each of the 
figures 2- 12 denote non-dimensional times U, T / x . )  For simplicity, and following 
Bruun (1977) and Yule (1978), we use 7 = (y - to)/. as the non-dimensional transverse 
co-ordinate; since the virtual origin is located at 0.130 upstream from the lip, it is 
permissible to ignore the virtual-origin effect in this respect. The ijp traces are staggered 
in 7 marked on the left boundary of the figure; the top trace is for the largest radial 
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FI~URE 2. Final iteration ensemble-average staggered profiles of iJ,/U,. (a) x / D  = 1.5; ( b )  
x / D  = 3.0;  ( c )  x / D  = 4.5. The time-mean value VIU,  corresponding to each 7 is indicated 
on the right boundary. 
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position and the bottom one for the jet centreline; the fip/Ue scale is shown as an insert 
on the right-hand side. These time traces show phase-average deviations from the 
local time-mean velocity. The time-mean value F' corresponding to each 9 is marked 
on the right-hand side. Figures 2 ( b )  and 2 (c) show the corresponding staggered CpplUe 
profiles a t  stations 2 ( x / D  = 3.0) and 3 ( x / D  = 4.5). While the instantaneous time 
traces v(t)  do not show clear evidence of the underlying structure, the application of the 
method of optimum alignment through maximization of cross-correlation and phase 
averaging brings out the signature of the underlying spark-induced structure (see I). 
Like the iip data, fip(T) distributions also indicate a structure spanning the width of 
the mixing layer located, for example, a t  T z 24 ms in figure 2 (a).  The Cp data show 
that the spot structure a t  station 2 is quite complex. Note that, compared to the iip 
signal, the f i p  signal on the jet centre-line is comparatively much smaller and is thus 
indicative of essential axisymmetry of the phase-average coherent structure induced 
by the spark. 

In order to study the spot evolution, it is helpful to locate its centre as well as deter- 
mine its boundary. For this purpose, it is convenient to use contour plots of phase- 
averaged properties associated with the spot. Figures 3 (a) ,  ( b )  and (c) show contours of 
constant values of (the total) up;  the negative values are denoted by the dashed lines. 
At station 1, the radial position and the axial location (i.e. time delay T )  of the 
maximum value of up,  i.e. 7 z 0.06 and T z 24 ms, agree well with the maximum of up 
(see figure 17 (a )  in I ) .  This agreement is consistent with a high-speed parcel of fluid 
moving outward and thus represents transport of a significant amount of momentum 
normal to the shear layer (see discussion of upup data later). Note that the small 
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FIGURE 3. Contours of vp /U6 .  (a) x lD  = 1.5; ( 6 )  x lD  = 3.0; (c) x / D  = 4.5. 
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negative vp region in figure 3 (a) (at q N - 0.03, T 1: 19 ms) is embedded in the centre 
of a larger, negative up region (figure 17(a) in I) and should also contribute to the 
phase-average momentum transport up vp (see later). However, the radial momentum 
transport inward is much lower than that outward. The region of the positive peak 
at T N 13ms, 7 N 0.03 does not show a corresponding peak in the up data, thus 
suggesting that this part of the structure is not significant in radial momentum 
transport. The change in the vp contours between stations 1 and 2 show large distortions 
and suggest that the high-speed part is being convected past the low-speed, outer part 
in a somewhat ‘sliding’ fashion. Recent flow visualization movies (Clark 1979) of a 
high-speed axisymmetric mixing layer show that even the naturally occurring 
structures are occasionally torn apart, i.e. sheared into two or more parts, the parts 
on the high-speed side moving past the structures on the low-speed side. 

Even though vp contours are not necessarily markers of the spot fluid, comparison 
of the structure contours in figures 2(a)  and (b)  suggests a clockwise rotation of the 
structure (in the (q, T )  plane) concurrent with the sliding motion. Similar rotation, 
consistent with the shear-layer strain rate, is also apparent in figures 17(a) and (b) 
of I. The structure is significantly weakened, presumably by both breakdown and 
decay, by the time i t  reaches station 3. At this station, the peak value of vp is located 
a t  q 21 0.03 and T N 48 ms. The up contour at  this station also shows a peak at the same 
location, suggesting a strong radial momentum transport outward even at  this down- 
stream station. Note that there is no peak in up corresponding to the positive and 
negative peaks in up a t  T = 34ms and 43 ms (figure 17c of I), suggesting that fluid in 
this region does not transport significant momentum. The up and up contours together 
suggest that the structure is located at r z 24 ms, 37 ms and 50 ms at stations 1 , 2  and 
3, respectively. 

The staggered distributions of the phase-average r.m.s. intensity vi/V, for the 
stations 1 , 2  and 3 are shown in figures 4 (a ) ,  (b)  and (c) ,  respectively. The corresponding 
radial locations 7 are marked on the left boundary of the figure. These figures give the 
deviations of vi over its zone-average r.m.s. value a;, the average having been obtained 
through integration of vi over the record length, i.e. the data represent (vi- Gi)/Ue. The 
S i  value corresponding to each 7 is noted on the right-hand boundary. The fluctuations 
are the largest at station 1 and the smallest at station 3. It should be recognized that 
vi data may be taken with some reservation because of the artifacts inherent in the 
phase-average measurements. Even if the spots are optimally aligned, owing to the 
jitter in the shape, size and orientation, the phase-averaging process can contribute to 
vi mainly in the regions of large gradients. Comparison of figures 3 and 4 show that the 
large values of vi are associated with the locations of the structure centres identifiable 
from the up contours. Phase-locked measurements in the mixing layer of a circular jet 
under excitation also showed peak ui and vi to occur at  structure centres (Zaman 
1978). Since v p ( T )  undergoes reversal across the vortex centre, it  is not obvious if vi 
is contributed mainly by jitter. However, discussion of (urv,) data (see later) show 
that the contribution of jitter is small. Thus, one can reject phase jitter being a major 
contributor to vi. 

4.2. Coherent and background Reynolds stresses 

The phase-average contours of the spot-induced coherent Reynolds stress up vp(T)  are 
shown in figures 5 (a ) ,  (b)  and ( c )  for x / D  = 1.5,3.0 and 4.5, respectively; positive values 
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are shown by solid and negative by dotted lines. Note the amazing similarity between 
the up and upvp contours; even the centres of the cells agree. This shows the dominant 
influence of the transverse motions up on coherent momentum transport upvp, as to be 
expected and as independently emphasized by Zaman (1978). This is exemplified a t  
station 3, where up and vp contours aredifferent but upvp contours are similar to those 
of up. The up up contours show that the momentum transport by the coherent structure 
is mostly outward; the inward momentum transport is comparatively small. If the 
coherent momentum transport itself is regarded as a characteristic of the spot, com- 
parison of the up vp contours at  stations 1 and 2 suggest some ‘sliding ’ of the high-speed 
part of the spot over the low-speed part, as suggested by the vp data. Note that 
between stations 2 and 3 the spot structure and transport (upvp)  become simpler as 
depicted by their contours while the spot’s role in outward momentum transport is as 
dominant as in station 1. 

If viewed from the time-mean velocity field, the coherent structure Reynolds stress 
is GpGp (see equation (2.8)). Note, however, that this is not the total momentum 
transport, since UGp and GP V also represent coherent structure momentum transport. 
Figures 6 (a) ,  ( b )  and (c) show the contours of constant values of iip Gp for stations 1, 2 
and 3, respectively. Note that the contours in figures 6 (a ) ,  (a) and ( c )  are simpler than 
those in figures 5 (a) ,  ( b )  and (c). At each station, the contours consist of a positive and 
a negative transport region. Nevertheless, we believe the contours in figures 5 (a ) ,  ( b )  
and ( c )  are more meaningful in depicting the momentum transport by the spot. 
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The phase-average traces of the background Reynolds stress (urv,) are shown in 
figures " ( a ) ,  ( b )  and ( c )  for stations 1,  2 and 3, respectively. These are denoted as 
deviations from the zone average urv, determined by integrating (u,v,) over the 
record length; the u?, values are indicated on the right-hand boundary. A t  station 1, 
(u,v,) is the largest a t  T z 25 ms on the outer edge but at  T z 19 ms on the inner edge. 
These two correspond to the locations of peak positive upvp and peak negative upvp 
values. Note that these peaks are not attributable to jitter since the (urvr) peaks 
coincide with the centres of corresponding upvp contours rather than the regions of 
steep gradients of the latter. The (u,.v,) data at  stations 2 and 3 show no clear influence 
of the presence of the spot. Note also that (u,v,) is essentially zero on the jet centre- 
line at all the three stations, as to be expected. Comparison of the peak values of 
upvp and (u,v,) show that the former is much larger than the latter, thus suggesting 
that the coherent structure plays a dominant role in momentum transfer. This 
dominance has not decreased a t  station 3 where the ratio of peak upvp and (u,v,) 
values is around 3. 

A 

4.3. Vorticity contours 

Figures 8 (a ) ,  ( b )  and ( c )  show the contours of the phase-average vorticity associated 
with the spot. The phase-average u,(T) and v,(T) data traces were low-pass filtered in 
order to eliminate artificially large gradients due to the influence of the phase-random 
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components on the limited-sized ensemble. The plotted vorticity 
z component of the phase-average vorticity V x v p  in the (2, r )  plane, i.e. 

represents the 

The streamwise gradient avp/ax was obtained by the application of the Taylor hypo- 
thesis in the frame of convection of the structure, i.e. 

The radial gradient aup/ar was obtained by first fitting the radial distribution of the 
phase-average up(r )  daba at the phase under consideration with a parabola. This was 
done such that the point under consideration was at the middle of the three radial points 
through which the parabola passed. The slope of the parabola a t  the middle point gave 
the desired au,/ar. 

U, in equation (4.2) is the convection velocity of the spot. The question naturally 
arises as to how the convection velocity should be determined. V, can be determined 
from centroids of phase-average contours of the structure-induced longitudinal or 
lateral velocity undulations up or up,  the coherent Reynolds stresses upvp  or Cpijp, 
vorticity C p ,  streamlines @p, pseudo-stream-function (@), or intermittency yp. Of 
these, the most attractive appeared to be upvp,  lp, or (@). The stream-function con- 
tours (discussed later), being not invariant under Galilean transformation, will be 
dependent on the convection velocity of the reference frame used. The use of up up has 
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two complications. One is the direct effect of the streamwise convection velocity of the 
reference frame, which affects up but not vp. The second is that the locations of peaks 
in the up up contours are not associated with the vortex centres. Owing to the planetary 
motion of the peak-vorticity fluid around the spot centre (see later), vorticity contours 
are not helpful in providing accurate U, data. The value of Uc was determined from (4) 
contours through an iterative process. That is, based on the up contours (see I), an 
initial guess of Uc = 0.7Ue was assumed. This value of U, was used to compute (4) 
contours a t  the three stations (see later). From the locations of the centroids of these 
contours the value of U, was found to be 0.68U,, which was taken to be final value of 
Uc used in (4.2). 

The applicability of the Taylor hypothesis to the deduction of spatial variations of 
large-scale coherent structure properties in the mixing layer is clearly questionable, 
as should be apparent from the governing equations. In  addition to the explicit 
assumptions (i.e. negligible pressure gradient and viscous effects), the hypothesis 
involves the implicit assumptions regarding fluctuation intensity and shear rate (Lin 
1953). On an instantaneous or phase-average basis, neither the shear rate nor the 
fluctuation level associated with the coherent structure is small. The remedy for this 
problem would be to repeat the phase-average measurements at  different spatial 
locations of the structure cross-section, all at the same phase (Hussain & Zaman 1979). 
In  the context of the present investigation, this approach was considered forbiddingly 
time-consuming and was not pursued. 

An alternative but physically comprehensible way of interpreting (4.2) is to consider 
the velocity field u(x, t )  in the stationary reference frame and u*(x*, t )  in the reference 
frame convected downstream with a velocity U,, i.e. 

z: = xi - v,t&; U$(X*, t )  = U i ( X ,  t) - Ue&, (4.3) 

where subscript 1 in the Kronecker delta aij refers to the streamwise direction. Thus, 

Consequently, if an observer riding on the spot structure sees insignificant changes in 
the motion associated with the structure, &*/at can be neglected, and it is permissible 
to use the Taylor hypothesis (3.2). From this point of view, the situation is much more 
favourable in the boundary-layer spot where the streamwise rate of change of the 
structure is much slower and the spot has a self-preserving shape (Wygnanski et al. 
1976) and where use of the Taylor hypothesis is justified even though considerations 
of shear rate and velocity fluctuation intensity would suggest otherwise. In the mixing 
layer, however, the spot structure undergoes far more rapid distortion compared to the 
rate of change of the scales; consequently, the use of the Taylor hypothesis is clearly 
questionable. The extent of the deviations introduced due to the use of the Taylor 
hypothesis in a mixing layer is being investigated in our laboratory. 

The vorticity contours reveal interesting details of the flow dynamics. The spot- 
induced structure is marked by ‘ hills ’ and ‘valleys ’ of the phase-average vorticity. 
Note that vorticity everywhere is of the same sign, as to be expected. On both left- 
and right-hand ends of figures 8 (a ) ,  ( b )  and (c), the two apparent large cells emphasize 
the spot in between. Since the spot structure is marked by significant coherent vorticity, 
the fluid outside the spot would randomly constitute either fine-grained turbulence of 
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the mixing layer, potential fluid or other naturally occurring structures. Measurements 
phase-locked onto the spot will accentuate the spot vorticity, as compared to the 
surounding vorticity. This is not to say that instantaneous vorticity in the turbulent 
fluid outside the spot is significantly lower, but that this random occurrence will smear 
out as well as lower the phase-average vorticity outside. Away from the spot, however, 
the phase-average vorticity should approach the time-mean vorticity of the mixing 
layer in the absence of the spot. Thus, on both left- and right-hand side ends, there 
should be half-cells approaching constant values (horizontal lines) forming two 
opposite U-turns a t  the boundaries. The tendency for the vorticity contours on the 
left boundary to close, indicating an apparent vorticity hill, is an artifact of the time 
shifts introduced in the realizations for optimum cross-correlation (see I). Owing to 
these time shifts, the vacated data locations (i.e. phases) are filled with zeroes; 
the consequence is the drop-off of vorticity a t  the left- and right-hand boundaries, 
resulting in an apparent closed-cell structure. 

If the spot was embedded in the fine-scale turbulence or superimposed on the 
naturally occurring structure, the vorticity between the spot and the end cells would 
not drop significantly. The presence of low vorticity regions on either side of the spot 
suggests that low vorticity fluid elements, rather than naturally occurring structures, 
occupy the immediate vicinity of the spot. Consequently, it would appear that the 
spot is one of the naturally-occurring structures triggered by the spark. 

as a function of 7 in the mixing layer in 
the absence of the spot is indicated on the right-hand boundary. Note that the time- 
average vorticity progressively decreases with increasing x. The ratio of the peak spot 
vorticity to the time-mean vorticity a t  stations 1, 2, and 3 are 1-08, 1.15 and 1-30, 
respectively. This shews that the coherent-structure vorticity drops in x a t  a slower 
rate than the time-mean vorticity, as to be expected. 

It is interesting to compare the vorticity contours at the three stations. At station 1 ,  
the positive vorticity cell is thin and extends across the entire width of the mixing 
layer, the peak being located a t  T M 18 ms and 7 M - 0.03 and moving forward with 
respect to the weaker outer part. Following the peaks and valleys of the vorticity 
contours from stations 1 to 2 and then from 2 to 3 suggests a clockwise rotation of the 
spot structure in the (7, T) plane. Note that the radially elongated coherent structure 
appears to shrink progressively, resulting in a single rounded structure at station 3. 
This does not necessarily represent a shrinking of the width of the vortical structure 
since the same A7 values a t  station 3 represent three times the physical thickness of the 
layer at station 1. Thus, the vortical structure width does not seem to grow with x as 
fast as the flow width represented by the mean velocity profile. Due to lateral excur- 
sions of the structures (which increases with x), it is possible for the mean velocity 
profile to indicate a width of the mixing layer noticeably larger than the widths of 
inidividual structures. 

At station 1, the region of minimum vorticity in front of the structure (figure 8a)  is 
consistent with the low value of intermittency found there (see later) and is attributed 
to an apparent organization of the layer at the front of the structure. At this station, 
the noticeable difference between the spot centre identified by the pseudo-streamlines 
(or intermittency contours) and the vorticity contours indicates significant intensifica- 
tion of vorticity on the high-speed side leading edge (i.e. left-hand bottom corner of 
the spot). 

The variation of the time-mean vorticity 
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FIGURE 9 ( a ) .  For legend see page 121. 

As with the iip EP data, it may be interesting from a classical point of view, to examine 
the spot vorticity as a deviation from the time-mean vorticity (figures 9a, b,  c). At 
station 1, the vorticity perturbation is essentially a deficit below the time-mean 
vorticity in the absence of the spot, except for a thin ridge of excess vorticity extending 
across t,he mixing-layer width. A t  a still lower T, there is another ridge of excess 
vorticity preceding the other ridge. Note that the excess vorticity peaks agree with the 
peaks of total vorticity contours at  all the three stations. Following the vorticity 
contours from stations 1 to 3, it is clear that the peak phase-average vorticity perturba- 
tion moves progressively outward; these peaks also depict a clockwise rotation of the 
structure in the (7, T) plane. 

4.4. Phase-average streamlines 

The X-wire measurements provide phase-average time series of the orthogonal 
velocity components up(r ,  t )  and vp(r, t )  of the spot structure at  the probe location. 
Application of the Taylor hypothesis, usiilg the structure-convection velocity U,, 
would give the approximate spatial distribution of the spot velocity field v = (uP;up) 
in the (x*, r )  plane, essentially at  the phase when the spot is centred at  the measure- 
ment station. The spot streamlines $ p  in the ( z * , r )  plane can be derived from the 
(up, vp) data using the definition v x ds = 0 ;  thus, the slope of the phase-average 
streamline $p a t  any location (x* ,r )  is the ratio of up to up, i.e. (dr/dx*), = vp/up. 
Application of the method of isoclines can thus produce the streamlines at  the phase 
corresponding to the (up, v,) data. 

However, in view of the fact that the mixing-layer spot is a complex entity which 
undergoes relatively rapid streamwise change, the success of the method will depend 
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FIGURE 10 (a). For legend see page 124. 

on the closeness at which data are available. The extremely time-consuming process of 
signal alignment through cross-correction (see I) before the phase-average velocity 
field (u,,v,) was derived, allowed us to take data at only a few (8) radial positions. 
Interpolation can be used to generate additional data at  many intermediate radial 
positions. However, because of the large spatial variations in the velocity field aaso- 
ciated with the spot [for example, see figure 3 (or figure 17 of I)], it was not considered 
worthwhile to generate the streamlines 1c;? through the distributions of the velocity 
slope vp/up by applying the method of isoclines. 

Figures lO(a) ,  ( b )  and ( c )  show the distributions of the phase-average velocity 
vectors(up, v,) in the (7,T) plane. The dots denote the origins of the vectors, the lines, 
their directions, and the lengths, the velocity magnitudes. These vector distributions 
are drawn with respect to a frame convected down stream with the structure velocity 
U, = O-SSV,. Thus, the flow is towards decreasing T (i.e. increasing x) on the jet centre- 
line and in the opposite direction on the outer edge. Note that, a t  the location of the 
spot, the velocity vectors do not indicate a simple flow pattern. The apparent com- 
plexity can be reduced by comparing the vector patterns with pseudo-stream-function 
contours (see later). 

One can draw smooth lines connecting the vectors by following their directions. 
However, from practical considerations, hand-drawn contours connecting the 
vectors cannot be accurate since any bias can produce cumulative errors along a 
streamline without showing a clear conflict with the vector field. Figure 10 ( d )  shows 
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FIGURE 10. Phase average velocity vectors. (a) x / D  = 1.5; ( b )  x / D  = 3-0; (c) 
( d )  streamlines corresponding to the vector field in (a).  

x / D  = 4 .5 ;  

one example of smooth streamlines corresponding to the vector fields shown in figure 
lO(a). While the streamline patterns depict the complicated velocity field in the spot, 
it  is clear that the streamlines suggest a spot coherent structure different from what 
either up or up contours suggest separately (compare figure 10d with figure 3a in this 
part or figure 17a of I). 

4.5. Pseudo-stream-functions 

A phase-dependent stream function (y+(x, r ) )  can be computed from the measured 
radial distributions up(?-) alone. Because these would be the true stream functions only 
under some restrictive assumptions outlined below (see also Hussain & Zaman 1979)) 
these are called pseudo-stream-functions and the lines of their constant values, the 
pseudo-streandines. 

There is no reason for suspecting that the structure on the average is not symmetric 
with respect to the plane of symmetry (of the spark). It was inferred from the vorticity 
data that the spot is probably a naturally occurring one triggered by the spark. 
Furthermore, preliminary measurements at azimuthal angles 45", go", 135") 180" 
suggest that the spark-induced structure is nearly axisymmetric. This is also con- 
sistent with the low up magnitudes on the jet centre-line discussed earlier. Thus, one 
can assume the structure to be essentially axisymmetric. Under these assumptions, 
the incompressible Aow continuity equation for the phase-average flow field is 
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%+--(rvp) i a  = 0, 
ax r ar (4.5) 

in terms of cylindrical co-ordinates (x, r ,  4) with respect to the velocity components 
(up, vp, wp). Equation (4.5) assures that there exists a function <$(x, r ) )  such that 
ru, dr - rv, dx is an exact differential d($) of ($). That is, 

For the present case of the time-dependent coherent structure motion, the function 
($(x, r,  t ) )  is defined as 

d($) = rupdr-rvpdx+- a(@) at at. (4.7) 

The consequence of a($) being an exact differential is that its change between two 
points 1 and 2 (say (xl, rl, t,) and (x2, r2,  t2 ) )  is the difference between the values of 
($) a t  the two points, i.e. 

If we now focus our attention a t  a fixed station (i.e x = constant) and a t  a particular 
time with respect to the spark trigger (i.e. t = constant), then 

On the basis of the assumed axisymmetry, we can set ($,) = 0. Thus, from the radial 
variation of up alone, the phase-average distributions ($) can be determined at the 
phases corresponding to the up data. 

Figures 11 (a) ,  (b) and (c) show the pseudo-streamfunctions at the measurement 
stations, 1, 2, and 3, respectively, drawn with respect to a reference frame convected 
downstream with the velocity U, = 0.68Ue. That is, at any t = t,, 

(4.10) 

Even though the integration in (4.10) would produce smooth contours of ($), com- 
parison of the stream functions ($) with the streamlines $p and vorticity contours is 
expected to reveal interesting aspects of the dynamics of the coherent structure. 

In  figures 11 (a)-(c), the transverse position 7i, is indicated on the left-hand side; the 
($) values are not shown for simplicity. Note that the spot-induced primary structure 
is located a t  T N 24.2 ms in station 1. The structure clearly extends beyond the time- 
average boundary of the layer on the low-speed side. The apparent secondary structure 
on the left (also in figure lob ,  c) is merely a consequence of streamline reversal due to 
the reference frame convection velocity, since in the reference frame convected a t  
U, = O-SSV, flow is towards decreasing time (i.e. increasing x) on the high-speed side 
and reverse on the low-speed side. The structure a t  T M 33 ms is an artifact resulting 
from numerical integration and presumably not the wake of the spot-induced structure; 
further downstream (i.e. in stations 2 and 3), this secondary structure disappears. Note 
that the integration method smooths out the detailed variations apparent in other 
contours. 
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FIGURE 11 (a). For legend see page 127. 

The streamline patterns based on the computed ($) contours, when compared with 
the velocity vector field data (figures 10a, b,  c ) ,  permit a clearer interpretation of the 
vector field. Note that the vector field data in these figures would appear confusing 
but are quite consistent with the streamline patterns I,+p. Figure lO(a) clearly shows 
that the spot is located nearer the outer edge of the layer at T 2: 24 ms. Note that at  
stations 2 and 3, the structure has a blunt front but is tapered at  its trailing edge. Note 
also that the front (downstream edge) occurs at an earlier time, i.e. to the left in figure 
lO(a). For discussion of comparisons between ($) contours and vorticjty contours, see 
§ 5. 

4.6. Intermittency contours 

From the classical, time-average view, the mixing layer is a region of turbulent flow 
increasing in width in the streamwise direction. However, high-speed flow visualiza- 
tion studies (for example, Clark 1979) show that the layer is often organized into 
vortical lumps of fluid connected by thin vortical regions called braids. Thus, thetime- 
average intermittency profile a t  any station should be zero on either side of the mixing 
layer and maximum (but probably not 100 yo) in the middle of the mixing layer. Since 
the intermittency detection is based on an independent criterion and the y p  contours 
are independent of reference frame convection, the y p  contours should provide an 
essentially independent check on the spot boundaries deduced from the contours of 
up, vp, upvp, iip?7p, C p ,  C p ,  I,+p and (I,+). Note that, unlike the contours of t ~ ~ , v ~ , u ~ v ~ a n d  
6, the yp contours are simple and show reasonable agreement with the spot location 
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FIGURE 12 (a). For legend see page 129. 

depicted by the ~p or (@) contours. Thus, in spite of the rough computation method 
involved, the pseudo-stream-function contours appear realistic. 

The y p  contours show that the spot extends outside the mixing layer on the low- 
speed side. Away from the spot, near the left- and right-hand side boundaries of the 
figures 12 (a) ,  (6) and ( c ) ,  the intermittency distribution in 7 should match the time- 
average intermittency profile in the layer in the absence of the spot. The apparent 
presence of one structure in front (at a lower T )  and at the rear (at a larger T )  are 
artifacts due to the time shifts as discussed earlier. The low intermittency regions just 
in front and behind the spot, say at  T 3 18 ms and 30 ms in figure 12 (a ) ,  are discussed 
below. 

5.  Dynamics of the spot 
Prom the phase-averagecontoursofu,,vp,upvp,iZp~p,~p and[, whichshowanumber 

of hills and valleys, it may appear that the spark-induced spot structure is an irregular 
entity, undergoing complex sets of distortions. This is definitely so in comparison to 
the boundary-layer spot, where the up contours alone show a self-preserving unicellular 
structure of a unique shape. However, if the phase-average pseudo-stream-function 
($) or intermittency y p  contours are considered, it is evident that the mixing-layer 
spot structure is comparatively simple, consisting of a large-scale, single entity. Note 
that sufficiently in front and behind the spot, the yp  or ($.> values should approach the 
corresponding mean values in the unperturbed mixing layer. Thus, because of the 
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convection velocity U, of the reference frame, the streamlines should form ' 3 and c 
turns'. The apparent peaks formed on either end of the spot near the left- and right- 
hand boundaries of figures 11 and 12 are measurement artifacts at the ends of data 
time series discussed earlier. 

The regions of low intermittency ahead and behind the spot in figures 12 (a), ( b )  and 
(c) need to be explained. If the spot was an energetic turbulent patch of fluid embedded 
in the middle of a fine-grained turbulent mixing layer, these low y regions should not 
appear. The spot could be an independent entity superimposed on the naturally 
occurring mixing-layer structures or connected to the naturally occurring structures 
through braids. I n  either case, since the natural structures occur randomly in space and 
time, when their signatures are aligned with respect to each other, the spot structure 
will be highlighted and the intermittency will be high over its extent. The phase- 
average intermittency outside the spot due to the randomly occurring natural struc- 
tures will be comparatively small. The orientations of the braids connecting the spot 
to the natural structures will also vary randomly, thus lowering intermittency outside 
the spot. Hence, the phase-average vorticity and intermittency outside the spot should 
be smaller. 

Based on the above discussion, the spot boundaries deduced from y p  and Cp data 
may be intuitively expected to be similar. Comparison of figures 8 and 12 reveal 
significant differences. One explanation is that even though y p  is based on the vorticity, 
the yp and Cp are biased by different ranges of frequencies. The lp data are based on 
smoothed derivatives of the low-pass fiItered up and vp data; thus, Cp contours are 
biased towards the low frequencies. On the other hand, yp ,  defined on the basis of the 
(av/atI + A  la2v/at21 signal level, is biased towards the high frequencies. Even though 
higher vorticities are associated with smaller scales, Cp contours essentially identify 
large-scale motion associated with the spot. However, since the phase averaging in the 
determination of y p  contours is taken after the I ( t )  signal is obtained, the high- 
frequency information content in the yp contours is unaffected by the phase-average 
operation. These differences in their measurement techniques would permit differences 
between 7, and &, contours. Comparison of y p  and Q contours show that their centres 
do not agree either. If a y p  contour is accepted as a boundary of the spot, the peak 
vorticity occurs on the front, high-speed end of the spot a t  station I ,  just in front of it 
a t  station 2 and radially outside it in station 3 (see figure 12). This is consistent with 
the notion that the spark-induced structure undergoes large-scale rotation so that 
high vorticity fluid on the spot boundary undergoes planetary motion around the spot 
centre; the rotation is qualitatively depicted by the trajectory of the fluid marked by 
the vorticity peaks and valleys. Between stations 1 and 3 the rotation is seen to be 
about 160". Note that the rotational trajectory of the vorticity peak-marked fluid 
around the spot centre is consistent with the pseudo-streamline patterns in figures 
11 (a ) ,  ( b )  and (c) computed from u, data, and that the vp contours are also consistent 
with this explanation. The contours of constant pseudo-stream-functions, i.e. the 
pseudo-streamlines, are strongly dependent on the reference frame used. On the other 
hand, y p  contours are invariant under Galilean transformation. In  spite of these 
obvious differences, there is an amazing agreement on the spot boundaries as well as on 
the spot centres marked by y p  and <$) contours. The spot centre marked by the (+) 
contours occurs a t  exactly the same T but a t  alarger 7. This isattributed totheastifact 
of the convection velocity of the reference frame. For a given velocity profile, the 7 
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location at which the relative velocity becomes zero progressively moves outwards 
with decreasing U,. 

The agreement between the spot centres indicated by the (+) and yp  contours 
suggest that the computed stream functions are qualitatively correct. This agreement 
also justifies the derivation of the convection velocity U, based on the (@) contours, as 
opposed to  the Cp contours. However, because ($) is based on integration of up data 
only, the computed (+) contours are not expected to agree in detail with the streamline 
pattern deduced from the (up, v,) distribution in the (x, y) plane; for example, compare 
figure 11 (a)  with figure 10 (a ) ,  and especially with figure 10 (d). Because the streamwise 
convection velocity of the structure has been subtracted out, the detailed streamlines 
based on the vector (up,vp) will be much more sensitive to the accuracy of the v( t )  
measurement. Note that the leading edge ofthe spot has steep, closely-packed stream- 
lines while the trailing edge is less steep. Both the (@) and y p  contours show that 
sufficiently away from the spot, it has no influence on the basic flow and thus pre- 
sumably on the naturally occurring structures. The low values of y p  on the leading 
edge of the spot suggest stabilization of the flow field in front of the spot. The low 
intermittency and vorticity in front of the spot can be attributed to entrainment of the 
high-speed potential flow from the jet core in front of the spot. This suggestion is also 
consistent with the pseudo-streamline patterns (figure 11) .  

At station 1,  the noticeable difference between the spot centre (identified) by the 
pseudo-streamlines or intermittency contours) and the vorticity contours indicates 
significant intensification of vorticity on the high-speed side leading edge (i.e. left- 
hand bottom corner of vorticity peak). Distributions of the phase average of the 
background-turbulence Reynolds stress (ur wr) show large negative values a t  this 
location. In order to relate the phase-average vorticity field to the turbulent field, it is 
necessary to derive the governing equation for the phase average vorticity (&). 
Substituting the decomposition (2.1), i.e. Ci = (Ci) + Qi, into the incompressible-flow 
vorticity equation, one gets 

Note that the mean vorticity is included in the phase-average vorticity; this is an 
important point since, when the spot is present, the spot vorticity is the entire vorticity 
and not a peturbation over the time mean. Phase averaging the equation gives 

If 1 is the characteristic size of the coherent spot structure and if Cri and ufi are well 
correlated, then 

provided that Juril N I(ui)J = O(U,) and {Ci )  - qJl, Cri = U,/h. In the above, h is the 
Taylor microscale defined such that ((au,/axj) (aui/azj)) = u2/A2 = O( U,2/h2). Clearly, 
since h < 1, the coherent vortex stretching term on the right-hand side can be neglected. 
Independently, vortex stretching can be regarded as negligible in the axisymmetric 
flow. The stretching due to the changes in the toroid diameter is not likely to be large. 

5-2 
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An estimate of the viscous term in (4.2) can also be obtained from 
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Since the flow Reynolds number is very large and 19 h the viscous diffusion is insigni- 
ficant. This is also consistent with the notion that the turbulent flow dynamics is 
essentially inviscid. Since the structure transit time rT is of order l/Ue and the vorticity 
diffusion time rd is of order P / v ,  the ratio of the two time scales T d / r T  = U,l/v is very 
large, which also is another demonstration of the negligible effect of molecular diffusion 
on the coherent structure vorticity. Thus, 

The left-hand side represents the material rate of change of the vorticity in the phase- 
average field and the right-hand side the generation of the phase-average vorticity 
through the velocity-vorticity fluctuations coherence terms indicated as body force 
terms (these can also be viewed as vortex forces, see Tennekes & Lumley 1972). 

Further simplification of the equation can be introduced by specializing it for a flow 
homogeneous in the spanwise direction. That is, consider a/ax3 of all phase-average 
quantities are zeroes. The equation then reduces to 

which, when dynamic pressure fluctuations are neglected, becomes 

(5.6b) 

where $, is the measured vorticity (6). Note that the vorticity production will be 
largest in regions ofsaddle points in the (u,v,) contours. Following a streamline through 
the region of the leading edge of the structure on the high-speed side, i.e. through the 
location of vorticity peak I& in figure 8 (a), the differentiation of the (urvr)  data over 
the path gives a change consistent with the measured change in Cp indicated in 
figure 8 (a). While the resolution of the data is not good enough to give a meaningful 
numerical value, one can note that the maximum changes of C p  occur a t  the 'saddle 
points' of the (urvr)  distributions. 

Thus, the observed differences between the intermittency contours and the vorticity 
contours are the result of vorticity modification due to the spot-induced modulation 
of the background-turbulence Reynolds stress. Owing to the progressive weakening 
of the structure, these modulation effects become less pronounced and the vorticity 
contours become similar to the intermittency contours. 

The maximum phase-average vorticity within the structures never deviates 
significantly from the time-average vorticity (figures 8a-c). Thus, the spark does not 
necessarily induce a strong artificial vortical structture, but serves to organize a 
naturally occurring rolled-up vortical structure. The phase-average vorticity away 
from the spot structure on the left-or right-hand ends is essentially that of the time- 
average vorticity. 
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Contour 

(+.> 
U V V P  

Y P  

1 + 2  

0.67 
0.72 
0.66 

TABLE 1 

2 + 3  

0.75 
0.72 
0.69 

The upvp contours show that the positive contours dominate the negative ones a t  
each station. Thus, on the average, the spot transports momentum outward away from 
the jet centre-line. If the intermittency contours or the pseudo-streamline contours 
are compared with the u p v p  contours, it is clear that the structure region is directly 
responsible for the momentum transport. The up up contour centres coincide with the 
corresponding y p  or (@) contours. The positive transport of momentum outwards over 
the extent of the structure is due to the fact that the structure helps transport high- 
momentum fluid from the jet core outward. 

Since the contour plots presented identify the time of detection of the structure 
centres at the three stations, these enable measurement of the structure convection 
velocity, depending on the contour chosen. The convection velocities in table 1 are 
measured for regions between stations 1 and 2 and between stations 2 and 3. The 
convection velocity of the spark-induced structure between stations 1 and 2 is 
slightly lower than that between stations 2 and 3. Considering the convection velocity 
profiles presented in I based on the characteristic features of the staggered u,(T) data, 
it is clear that  the structure convection velocity is weighted by data mostly in the 
middle of the shear layer. Note that the convection velocities inferred from the three 
contours are within the experimental uncertainty. 

6. Concluding remarks 
I n  an attempt to  investigate the dynamics of the large-scale coherent structure in 

the axisymmetric mixing layer, a coherent structure (called a ‘spot’ for simplicity) 
was induced by a spark triggered in the boundary layer preceding the lip of an axi- 
symmetric mixing layer. The mixing-layer spot was educed by the method of iterative 
alignment of individual realizations through maximization of cross-correlation between 
individual realizations and ensemble average, and then the phase average over 200 
realizations was obtained. Further signal enhancement was achieved through rejection 
of poorly aligned realizations. 

The dynamics of the turbulent mixing-layer spot, whose signature is buried in the 
large-amplitude random fluctuations, is much more complicated than that of the 
boundary-layer spot. The eduction of the spot signature and interpretation of its flow 
physics is a formidable undertaking. Of all the phase-average contours, namely of 
up, vn, upvp,  CPijp,  C p ,  6, @ p ,  <@) and y p ,  the last two provide a better picture of the 
overall flow characteristics of the spot and are thus most reliable for identification of 
the spot convection velocity. 

The spacing between sparks was so chosen that a t  a measurement station the 
passage time of a spot was less than 4 of the interval between the spots. Thus there 
was no interaction between two induced spots. On either the front or the back of the 
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spot, the phase-average properties approach the constant time-mean values. Also, the 
‘zone averages’ of ui, v: and (urvr> in the time interval containing the spot equal the 
values of these quantities in the same flow without the spot. These, together with the 
contour details, suggest that the spot is a naturally occurring structure triggered by 
the spark. The mechanism for the spot formation appears to be the generation of a 
pressure pulse by the spark and an associated nearly axisymmetric shear-layer roll-up. 
The relatively low up values on the jet centre-line also support this suggestion. The 
roll-up of the shear layer into an essentially axisymmetric vortical structure triggered 
by the spark suggests that the educed structure is not primarily the evolution of the 
boundary-layer spot that would be generated by the spark (Zilberman et al. 1977) 
simultaneously along with the shear layer roll-up. This boundary-layer spot may trail 
the structure but should decay because of lack of a sustaining mechanism. The 
apparent weak structure detected in the wake of the spot in the ($) contours a t  
station 1 does not necessarily represent this decaying boundary-layer spot but is 
probably an artifact of numerical integration. 

As the spark is fired, the shear layer is impulsively rolled up essentially into a 
toroidal vortical structure. This structure moves downstream transporting vortical 
fluid outwards, simultaneously entraining jet core fluid primarily a t  its front and 
ambient fluid primarily a t  its back. The Reynolds stress production associated with 
the spot is much larger than the background turbulence. The peak phase-average 
coherent Reynolds stress is found to be 0.055 U,Z a t  all the three stations as compared 
to 0*015U,2 in the mixing layer without the spot. 

By triggering the naturally occurring coherent structure with the help of a localized 
spark, we have been able to educe the large-scale coherent structure in an axisymmetric 
mixing layer. It has been possible to document the mixing-layer coherent structure in 
more detail than hitherto has been possible. It is not very likely that these details can 
be realistically captured for the naturally occurring structures in a mixing layer with- 
out involving cumbersome and tedious experimental approaches, primarily because of 
the inherent dispersion in shape, size, orientation and convection velocities of the 
natural structures as well as large radial variation in their organization (Lau & Fisher 
1975; Bruun 1977; Yule 1978; Lau 1978, private communication; Hussain & Clark 
1980). (Considering that the dynamics of the naturally occurring structures may indeed 
be different from the spot, measurements in undisturbed flows is clearly unavoidable 
and should be pursued.) 

It is shown that the coherent structure plays a dominant role in entrainment and 
vorticity transport. Even though the Reynolds stress production by the coherent 
structure is significantly larger than that due to the background turbulence, the 
coherent-structure vorticity is not significantly larger than the mixing-layer mean 
vorticity. Since the Reynolds stress outside the spot is noticeably lower, it can be 
concluded that Reynolds stress production in the mixing layer is mostly due to the 
coherent structures. 

The motivation of the present study was to characterize the large-scale coherent 
structure in the axisymmetric turbulent mixing layer. Presumably, an appropriate 
(random) superposition of these structures can lead to a physically sound model for 
turbulent shear flows. Even if it is granted that the spark-induced coherent structure 
reported here is a naturally occurring structure, it  is clear that the structure is far 
from simple, and undergoes rapid and complex sets of motions through interactions 
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with naturally occurring structures. The complexity of the spot structure should 
challenge the theoretician to strive to develop a realistic turbulence model using the 
educed large-scale structure as a building block. 

This research was supported by NSF Grant ENG 75-15226 and the Office of Naval 
Research Grant NO001 4-764-0  128. 
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